
September 23, 2011 Solution
Analysis I - Mid-Sem Exam - Semester I

1. Let (an) and (bn) be sequences converging to a and b respectively. Prove that (i) an + bn → a + b
and ran → ra, (ii) (an) is a bounded sequence.

Solution: (i) For a given ε > 0, there exists a natural number N such that |an − a| < ε/2
and |bn − b| < ε/2 for all n ≥ N . Thus, |an + bn − (a+ b)| ≤ ε/2 + ε/2 = ε for n ≥ N . Hence
an + bn goes to a+ b. Similiarly, there exists K, natural number, such that |an− a| ≤ ε/r
for n ≥ K; (the case when r = 0 is trivial, so here we have assumed r is nonzero.) Hence
|ran − ra| < ε.

(ii) To show the bounedness of a convergent sequence (an), we need to find an M > 0
such that |an| ≤M for all n. We assume that a ≥ 0; (the other case can be proved as −an
converges to −a.) For ε = 2a+ 2, we find N ∈ N such that |an−a| ≤ ε, ie, −1 < an < 3a+ 1
for all n ≥ N . Hence |an| < max{1, 3a+ 1} for all n ≥ N . Taking alongwith the maximum
of |a1|, ...., |aN−1|, we get the boundedness. �

2. Let (xn) and (yn) be bounded sequences. Then show that lim(−xn) = −lim(xn), and lim(xn) +
lim(yn) ≤ lim(xn + yn) ≤ lim(xn) + lim(yn) ≤ lim(xn + yn) ≤ lim(xn) + lim(yn).

Solution: We have that lim(xn) = limk→∞ infn≥k xn, and lim(xn) = limk→∞ supn≥k xn.

Now, lim(−xn) = limk→∞ infn≥k(−xn) = limk(− supn≥k xk) gives the first part.

For the part second, we have the following, assuming that the sequences are bounded.

infj≥k xj ≤ xj and infj≥k yj ≤ yj for each j ≥ k implies infj≥k xj + infj≥k yj ≤ xj + yj for
j ≥ k. Hence limk→∞ infj≥k xj + limk→∞ infj≥k yj ≤ limk→∞ infj≥k(xj + yj). This gives the
first inequality.

xj ≤ supj≥k xj for all j ≥ k implies xj + yj ≤ supj≥k xj + yj. Hence infj≥k(xj + yj) ≤
supj≥k + infj≥k yj. The second inequaltiy follows.

Similarly, we can prove the other inequalities.

�

3. (i) Show that if r is the limit point of a sequence (an), then there exists a subsequence (ank
)

converging to r. (ii) If (an) is defined by

a0 = 0, a2m = a2m−1

2 and a2m+1 = 1
2 + a2m,

then find lim infnan and lim supnan.

Solution: (i) Consider the interval Ik = (r − 1/k, r + 1/k, where k ≥ 1. By defintion,
each of these intervals contains terms from the given sequence. We can choose (ank

) in
such away that ank

∈ Ik, but not in Ik+1; in this way we get subsequence with different
terms. The result follows since, for a given ε > 0, one can find N such that 1/k < ε for
all k ≥ N and also |ank

− r| < 1/k for all k.

(ii) Observe that the sequence is
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0, 0, 12 ,
1
22 ,

1
2 + 1

22 ,
1
22 + 1

23 ,
1
2 + 1

22 + 1
23 ....

Each term is positive. We guess that the lim sup and lim inf are respectively 1 and
1/2 respectively as the the above sequence can be split into two subsequences by
collecting all the odd and even terms separately; one of them converges to 1/2 and
other converges to 1. Infimum and supremum are 1/2 and 1.

�

4. Prove that (i)limn→∞n
1/n = limn→∞(n− 1)1/n = 1, (ii) every Cauchy sequence converges.

Solution: (i) Let yn = n1/n. So, log yn = log n/n, n ≥ 1. Using L’ Hopital rule for log x/x,
we get log yn converges to 0. Hence yn converges to 1. The same proof applies to the
other limit in the question.

(ii) Let (an) be a Cauchy sequence of real numbers. First, observe that (an) is bounded
which is exactly similar to the proof of part (ii) in the question 1; ( indeed, there exists
a natural number N such that |an − aN | < 1 for all n ≥ N . Now proceed as in the first
question.) Now we apply the Bolzano-Weierstrass theorem, namely every bounded
real sequence has a convergent subsequence, to (an). Let (ank

)k be a subsequence
converging to a. We claim that (an) itself converges to a. By definition, for a given
ε > 0, there exists N1 ∈ N1 such that |ank

− a| < ε/2 for all k ≥ N1. By Cauchy property,
we also have |an − am| < ε/2 for all n,m ≥ N2 for some N2. Take N to be any number
in (nk) , that is more than the maximum of N1 and N2. Hence, for j ≥ N , we have
|aj − a| ≤ |aj − aN |+ |aN − a. This gives the result. �

5. Prove that (i) If |an| ≤ cn for all n and the series
∑
cn converges, then the series

∑
an converges.

(ii) Let (ai) be a decreasing sequence of non-negative numbers. Prove that
∑
an converges if and

only of
∑

2na2n converges.

Solution: (i) By the comparison test, the series
∑
an converges absolutely. It is known

that aboslute convergence implies convergence in R.

(ii) Both the series terms are positive. Hence, to use the comparison test, it suffices to
prove that if the partial sum of one series is bounded then that of the series is bounded.
For this, let sn =

∑n
k=1 ak and Sn =

∑n−1
k=0 2ka2k be respectively the n-th partial sums of

the two series. Then

sn ≤ s2n−1 ≤ Sn since ak ≤ a2m−1 for 2m−1 ≤ k < 2m.

Also Sn < 2s2n−1 since

2ka2k ≤ 2

2k∑
m=2k−1+1

am

�

6. Prove that (i) If the sequence of partial sums of
∑

n an is bounded and (bn) is either monotonically
increasing or decreasing to 0, then

∑
anbn converges. (ii)

∑
n an converges and bn is a bounded

monotonic sequence, then
∑

n anbn converges.

Solution: (i) Claim: the partial sum sequence of
∑

n anbn is Cauchy. Assume that (bn)

is decreasing to 0. Split the sum
∑k

n=j ajbj as two sums, so that in the first we have
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all an terms neagative and in the second sum, all an positive. From the positive sum
part, take out the maximum of bj’s and in the negative part, take out the minimum of
−bj. Use the hypotheses. The proof of (ii) is similar.

�

7. (i) Find the readius of convergence of the following series:

1
3 + 1

5z + 1
32 z

2 + 1
52 z

3 + 1
33 z

4 + 1
53 z

5 + .....

(ii) Let (an) be a sequence. Put pn = |an|+ an and qn = |an| − an. Prove the following. (a)
∑
pn

and
∑
qn converge if and only if

∑
an converges absolutely. (b) If

∑
an and

∑
pn converge, then∑

an converges absolutely.

Solution: (i) The radius of convergence R is given by R−1 = lim sup |an|1/n for a series∑
anz

n. In this case, we find it separately for series with all odd terms and all even
terms. Then,

lim sup |a2n|1/2n = lim 1
3(n+1)/2n and lim sup |a2n+1)|1/(2n+1) = lim 1

5(n+1)/2n+1

These values are 1√
3

and 1√
5

respectively. Hence, the radius of convergence is
√

3.

(a) These follow reasily, as pn and qn are non-negative, and pn + qn = 2|an|. So, if
∑
pn

and
∑
qn converge, so does

∑
|an|. Conversly if this series converges absolutely, then

the observation
∑
pn ≤ 2

∑
|an| alongwith the comparison gives the result. (b) Observe

|an| = pn − an, hence the result. �
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